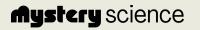
Mystery Science Alignment with the Idaho Science Standards

Mystery Science is a hands-on curriculum that aligns with Idaho's Science Standards (2022).


Mystery Science's units of study contain:

- Hands-on, easy-prep activities with EVERY lesson
- Engaging, real-world investigative phenomena
- Thoughtful discussions to build background knowledge
- Lesson & unit assessments to evaluate comprehension
- Curated, cross-curricular extensions

Mystery Science also offers the <u>Anchor Layer</u>, which enriches the unit with an anchor phenomenon, incorporates anchor connections after each lesson, & concludes the unit with a performance task.

Table of Contents • All Grades

Page 25

Page 26

Page 29

Page 31

Page 33

Page 34

Page 36

Page 37

Page 41

Page 42

Page 45

Page 48

Properties of Matter

Kindergarten	Page 3	3rd Grade
Life Science Animal Needs Plant Needs Earth & Space Science Severe Weather Weather Patterns Physical Science Sunlight & Warmth Pushes & Pulls	Page 4 Page 6 Page 8	Life Science Life Cycles Heredity, Survival, & Selection Earth & Space Science Weather & Climate Physical Science Forces, Motion, & Magnets
1st Grade	Page 11	4th Grade
Life Science Animal Traits & Survival Plant Traits & Survival Plant Traits & Survival Earth & Space Science Day Patterns Night Patterns Physical Science Light, Sound, & Communication	Page 12 Page 14 Page 16	Life Science Human Body, Vision, & The Brain Animal & Plant Adaptations Earth & Space Science Earth's Features & Processes Physical Science Sound, Waves, & Communication Energy & Energy Transfer Electricity, Light, & Heat
2nd Grade	Page 18	5th Grade
Life Science Animal Biodiversity Plant Adaptations Earth & Space Science Erosion & Earth's Surface Physical Science Material Properties	Page 19 Page 21 Page 23	Life Science Fossils & Changing Environments Ecosystems & The Food Web Earth & Space Science Water Cycle & Earth's Systems Earth & Space Patterns Stars & Planets Physical Science Chemical Reactions &

Table of Contents

All Kindergarten Units • Units may be taught in any order

Page 4 • Web Link

Page 5 • Web Link

Page 6 • Web Link

Page 7 • Web Link

Page 8 • Web Link

Page 9 · Web Link

Idaho Science Standards:

- K-LS-1.1
- K-ESS-1.2
- K-ESS-2.1

Idaho Science Standards:

- K-LS-1.1
- K-ESS-1.2
- K-ESS-2.3

Idaho Science Standards:

- K-ESS-1.1
- K-ESS-2.2

Idaho Science Standards:

- K-ESS-1.1
- K-ESS-1.2

Standards:

• K-PS-2.2

Unit Breakdown:

- 4 Lessons & Activities
- 4 Lesson Assessments
- 4 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 2 Lesson Assessments
- 3 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Idaho Science

- K-PS-2.1

Unit Breakdown:

3 Lessons & Activities

• 3 Extension Blocks

Anchor Layer Adds:

• 3 Lesson Assessments

• 1 Anchor Phenomenon

• 3 Anchor Connections

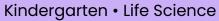
• 1 Performance Task

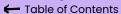
Unit Breakdown:

Idaho Science

Standards:

• K-PS-1.1

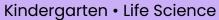

• K-PS-1.2

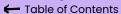

- 6 Lessons & Activities
- 6 Lesson Assessments
- 6 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 6 Anchor Connections
- 1 Performance Task

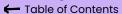
www.mysteryscience.com/docs/idaho





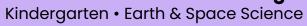
Animal Needs Unit (Animal Secrets)

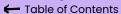
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Animal Needs: Food Why do woodpeckers peck wood?	 K-LS-1.1 Use observations to describe how plants and animals are alike and different in terms of how they live and grow. K-ESS-1.2 With guidance and support, use evidence to construct an explanation of how plants and animals interact with their environment to meet their needs. 	Obtaining, Evaluating, and Communicating Information Engaging in Argument from Evidence	LS1.C. Organization for Matter and Energy Flow in Organisms	Patterns
Lesson 2 A Read Along Mystery	Animal Needs: Shelter Where do animals live?	Foundational for K-ESS-2.1 Use a model to represent the relationship between the needs of different plants and animals and the places they live.	Obtaining, Evaluating, and Communicating Information	ESS3.A. Natural Resources	Patterns Systems and System Models
Lesson 3	Animal Needs: Safety How can you find animals in the woods?	K-ESS-1.2 With guidance and support, use evidence to construct an explanation of how plants and animals interact with their environment to meet their needs.	Obtaining, Evaluating, and Communicating Information Engage in Argument from Evidence	LS1.C. Organization for Matter and Energy Flow in Organisms	Patterns
that Hole? A Read-Along Mystery Stry to Break Jerrene Restractions by Alon Education	Animals & Changing the Environment How do animals make their homes in the forest?	Foundational for K-ESS-2.1 Use a model to represent the relationship between the needs of different plants and animals and the places they live.	Obtaining, Evaluating, and Communicating Information	ESS2.E. Biogeology	Systems and System Models



Plant Needs Unit (Plant Secrets)

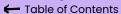
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Living & Nonliving Are plants alive?	K-LS-1.1 Use observations to describe how plants and animals are alike and different in terms of how they live and grow.	Analyzing and Interpreting Data	LS1.C: Organization for Matter and Energy Flow in Organisms	Patterns
Lesson 2	Plant Needs: Water & Light How do plants and trees grow?	K-ESS-1.2 With guidance and support, use evidence to construct an explanation of how plants and animals interact with their environment to meet their needs.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	LS1.C: Organization for Matter and Energy Flow in Organisms	Patterns Cause and Effect
Lesson 3	Human Impacts on the Environment Why would you want an old log in your backyard?	K-ESS-2.3 Communicate ideas that would enable humans to interact in a beneficial way with the land, water, air, and/or other living things in the local environment.	Obtaining, Evaluating, and Communicating Information	ESS3.C: Human Impacts on Earth Systems	Cause and Effect





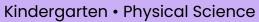
Severe Weather Unit (Wild Weather)

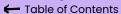
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Severe Weather & Preparation How can you get ready for a big storm?	K-ESS-2.2 Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, local weather.	Obtaining, Evaluating, and Communicating Information	ESS3.B: Natural Hazards ESS2.D: Weather and Climate	Cause and Effect
Lesson 2	Wind & Storms Have you ever watched a storm?	K-ESS-1.1 Use and share observations of local weather conditions to describe variations in patterns throughout the year.	Asking Questions and Defining Problems Obtaining, Evaluating, and Communicating Information	ESS3.B: Natural Hazards ESS2.D: Weather and Climate	Cause and Effect
Lesson 3	Weather Conditions How many different kinds of weather are there?	K-ESS-1.1 Use and share observations of local weather conditions to describe variations in patterns throughout the year.	Analyzing and Interpreting Data	ESS2.D: Weather and Climate	Patterns



Weather Patterns Unit (Circle of Seasons)

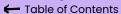
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1 Defective A Read-Along Mystery Story by Ruth Tapper Brown Restrations by Alex Kadomara	Daily Weather Patterns How do you know what to wear for the weather?	K-ESS-1.1 Use and share observations of local weather conditions to describe variations in patterns throughout the year.	Analyzing and Interpreting Data Obtaining, Evaluating, and Communicating Information Asking Questions and Defining Problems	ESS2.D: Weather and Climate	Patterns
Lesson 2	Seasonal Weather Patterns What will the weather be like on your birthday?	K-ESS-1.1 Use and share observations of local weather conditions to describe variations in patterns throughout the year.	Obtaining, Evaluating, and Communicating Information Engaging in Argument from Evidence	ESS2.D: Weather and Climate	Patterns Systems and System Models
Lesson 3	Animals Changing their Environment Why do birds lay eggs in the spring?	 K-ESS-1.2 With guidance and support, use evidence to construct an explanation of how plants and animals interact with their environment to meet their needs. K-ESS-1.1 Use and share observations of local weather conditions to describe variations in patterns throughout the year. 	Developing and Using Models	ESS2.D: Weather and Climate ESS2.E: Biogeology	Structure and Function





Sunlight & Warmth Unit (Sunny Skies)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1 Stry by for Marphy Restrictions by Amy Schlaser	Sunlight, Heat, & Earth's Surface How could you walk barefoot across hot pavement without burning your feet?	 K-PS-2.1 Make observations to determine the effect the Sun's energy on Earth's surface. K-PS-2.2 Design and build a structure that will reduce the warming effect of the Sun's energy on a material. 	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	PS3.B: Conservation of Energy and Energy Transfer ETS1.A: Defining and Delimiting an Engineering Problem	Cause and Effect Structure and Function
Lesson 2	Sunlight, Warming, & Engineering How could you warm up a frozen playground?	 K-PS-2.1 Make observations to determine the effect the Sun's energy on Earth's surface. K-PS-2.2 Design and build a structure that will reduce the warming effect of the Sun's energy on a material.* 	Asking Questions and Defining Problems Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS3.B: Conservation of Energy and Energy Transfer ETS1.A: Defining and Delimiting an Engineering Problem ETS1.C: Optimizing the Design Solution	Cause and Effect
Lesson 3	Sunlight & Warmth Why does it get cold in winter?	K-PS-2.1 Make observations to determine the effect the Sun's energy on Earth's surface.	Planning and Carrying Out Investigations	PS3.B: Conservation of Energy and Energy Transfer	Cause and Effect



Pushes & Pulls Unit (Force Olympics) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Pushes & Pulls What's the biggest excavator?	Foundational for K-PS-1.1 With guidance and support, plan and conduct an investigation to compare the effects of different strengths or different directions of pulls on the motion of an object.	Constructing Explanations and Designing Solutions	PS2.A: Forces and Motion PS2.B: Types of Interactions PS3.C: Relationship Between Energy and Forces	Cause and Effect
A Read-Along Mystery Stary & Ruth Terpor Brane Blustrations by Alex Malenaria	Pushes, Pulls, & "Work Words" Why do builders need so many big machines?	Foundational for K-PS-1.1 With guidance and support, plan and conduct an investigation to compare the effects of different strengths or different directions of pulls on the motion of an object.	Obtaining, Evaluating, and Communicating Information	PS2.A: Forces and Motion PS2.B: Types of Interactions PS3.C: Relationship Between Energy and Forces	Cause and Effect
Lesson 3	Motion, Speed, & Strength How can you knock down a wall made of concrete?	K-PS-1.1 With guidance and support, plan and conduct an investigation to compare the effects of different strengths or different directions of pulls on the motion of an object.	Planning and Carrying Out Investigations Developing and Using Models	PS2.A: Forces and Motion PS2.B: Types of Interactions PS3.C: Relationship Between Energy and Forces	Cause and Effect
A Reset Along Mystery A Reset Along Mystery Brown by San Trees Brown Harden by Alon Charge	Speed & Direction of Force How can you knock down the most bowling pins?	Foundational for K-PS-1.1 With guidance and support, plan and conduct an investigation to compare the effects of different strengths or different directions of pulls on the motion of an object.	Planning and Carrying Out Investigations	PS2.A: Forces and Motion	Cause and Effect

Continued on next page

Pushes & Pulls Unit (Force Olympics) • Page 2 of 2

	Topic & Guiding Question	ldaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 5	Direction of Motion & Engineering How can we protect a mountain town from falling rocks?	K-PS-1.2 With guidance and support, analyze data to determine if a design solution works as intended to change the motion of an object with a push or a pull.	Developing and Using Models Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS2.A: Forces and Motion ETS1.A: Defining Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Cause and Effect
Lesson 6 Ster Tro	Forces & Engineering How could you invent a trap?	Foundational for K-PS-1.2 With guidance and support, analyze data to determine if a design solution works as intended to change the motion of an object with a push or a pull. as needed to solve a given problem.	Constructing Explanations and Designing Solutions	ETS1.B: Developing Possible Solutions	Structure and Function

Table of Contents

All 1st Grade Units • Units may be taught in any order

Page 12 • Web Link

Page 13 • Web Link

Page 14 • Web Link

Page 15 • Web Link

Page 16 • Web Link

Idaho Science Standards:

- 1-LS-1.1
- 1-LS-1.2
- 1-LS-2.1

Idaho Science Standards:

- 1-LS-1.1
- 1-LS-2.1

Idaho Science Standards:

- 1-ESS-1.1
- 1-ESS-1.2

Idaho Science Standards:

• 1-ESS-1.1

Idaho Science Standards:

- 1-PS-1.1

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 4 Lessons & Activities
- 4 Lesson Assessments
- 4 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

- 1-PS-1.2
- 1-PS-1.3
- 1-PS-1.4

Unit Breakdown:

- 6 Lessons & Activities
- 6 Lesson Assessments
- 6 Extension Blocks

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 6 Anchor Connections
- 1 Performance Task

1st Grade • Life Science

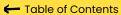
Animal Traits & Survival Unit (Animal Superpowers)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Parent & Offspring Traits How can you help a lost baby animal find its parents?	1-LS-2.1 Make observations to construct an evidence-based explanation that offspring are similar to, but not identical to, their parents.	Constructing Explanations and Designing Solutions	LS3.A: Inheritance of Traits LS3.B: Variation of Traits	Patterns
Lesson 2	Animal Structures & Survival Why do birds have beaks?	1-LS-2.1 Make observations to construct an evidence-based explanation that offspring are similar to, but not identical to, their parents.	Developing and Using Models Planning and Carrying Out Investigations Analyzing and Interpreting Data	LS1.A: Structure and Function	Patterns Structure and function
Lesson 3 and and an and an	Animal Behavior & Offspring Survival Why do baby ducks follow their mother?	Foundational for 1-LS-1.2 Obtain information to identify patterns of behavior in parents and offspring that help offspring survive.	Obtaining, Evaluating, and Communicating Information	LS1.B: Growth and Development of Organisms	Patterns
Lesson 4	Camouflage & Animal Survival Why are polar bears white?	1-LS-1.1 Design and build a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	Developing and Using Models Planning and Carrying Out Investigations Engaging in Argument from Evidence	LS1.B: Growth and Development of Organisms	Patterns Structure and function
Lesson 5	Inheritance & Variation of Traits Why do family members look alike?	Foundational for 1-LS-2.1 Make observations to construct an evidence-based explanation that offspring are similar to, but not identical to, their parents.	Constructing Explanations and Designing Solutions	LS3.A: Inheritance of Traits LS3.B: Variation of Traits	Patterns

1st Grade • Life Science

← Table of Contents

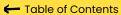
Plant Traits & Survival Unit (Plant Superpowers)


	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Plant Traits & Offspring What will a baby plant look like when it grows up?	1-LS-2.1 Make observations to construct an evidence-based explanation that offspring are similar to, but not identical to, their parents.	Constructing Explanations and Designing Solutions	LS3.A: Inheritance of Traits LS3.B: Variation of Traits	Patterns
Lesson 2	Plant Survival & Engineering Why don't trees blow down in the wind?	1-LS-1.1 Design and build a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	Developing and Using Models Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	LS1.A: Structure and Function ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Structure and function
A Head-Along Mystery Survey Con Marketone by Decons Cones	Plant Movement & Survival What do sunflowers do when you're not looking?	1-LS-1.1 Design and build a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.	Constructing Explanations and Designing Solutions	LS1.A: Structure and Function LS1.D: Information Processing	Structure and function

Idaho Specific Standard:

1-LS-1.3 Use classification supported by evidence to differentiate between living and non-living items.

This standard is covered in Kindergarten with the Mystery Science lesson Are plants alive?



Day Patterns Unit (Sun & Shadows)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Sun, Shadows, & Daily Patterns Could a statue's shadow move?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	ESSI.A: The Universe and its Stars	Patterns
Dery Je Can You Names & Air Mary Streets	Sun, Shadows, & Daily Patterns What does your shadow do when you're not looking?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Analyzing and Interpreting Data	ESS1.A: The Universe and its Stars	Patterns
Lesson 3	Sun & Daily Patterns How can the Sun help you if you're lost?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Developing and Using Models Engaging in Argument from Evidence	ESS1.A: The Universe and its Stars	Patterns
Lesson 4 ?	Daylight & Seasonal Patterns Why do you have to go to bed early in the summer?	1-ESS-1.2 Make observations at different times of year to relate the amount of daylight to the time of year.	Obtaining, Evaluating, and Communicating Information	ESS1.B: Earth and the Solar System	Patterns

Night Patterns Unit (Moon & Stars)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Moon Phases & Patterns When can you see the full moon?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Analyzing and Interpreting Data	ESS1.A: The Universe and its Stars	Patterns
Lesson 2	Stars & Daily Patterns Why do stars come out at night?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Developing and Using Models Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	ESS1.A: The Universe and its Stars	Patterns Cause and Effect
Lesson 3	Stars & Seasonal Patterns How can stars help you if you get lost?	1-ESS-1.1 Use observations of the Sun, Moon, and stars to describe patterns that can be predicted.	Obtaining, Evaluating, and Communicating Information	ESS1.A: The Universe and its Stars	Patterns

1st Grade • Physical Science

← Table of Contents

Light, Sound, & Communication Unit (Lights & Sounds) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Sounds & Vibrations How do they make silly sounds in cartoons?	1-PS-1.1 With guidance and support, plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.	Constructing Explanations and Designing Solutions	PS4.A: Wave Properties	Cause and Effect
Lesson 2	Sounds & Vibrations Where do sounds come from?	1-PS-1.1 With guidance and support, plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.	Constructing Explanations and Designing Solutions	PS4.A: Wave Properties	Cause and Effect
Lesson 3	Light, Materials, Transparent & Opaque What if there were no windows?	1-PS-1.3 With guidance and support, plan and conduct investigations to determine the effect of placing materials in the path of a beam of light.	Planning and Carrying Out Investigations Engaging in Argument from Evidence	PS4.B: Electromagnetic Radiation	Cause and Effect
Lesson 4	Light & Illumination Can you see in the dark?	1-PS-1.2 With guidance and support, make observations to construct an evidence-based explanation that objects in darkness can be seen only when illuminated.	Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS4.B: Electromagnetic Radiation	Cause and Effect

Continued on next page

1st Grade • Physical Science

← Table of Contents

Light, Sound, & Communication Unit (Lights & Sounds) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 5	Light, Communication, & Engineering How could you send a secret message to someone far away?	1-PS-1.4 Design and build a device that uses light or sound to communicate over a distance.	Constructing Explanations and Designing Solutions	PS4.C: Information Technologies and Instrumentation ETS1.B: Developing Possible Solutions	Patterns
Lesson 6	Lights, Sounds, & Communication How do boats find their way in the fog?	Foundational for 1-PS-1.4 Design and build a device that uses light or sound to communicate over a distance.	Obtaining, Evaluating, and Communicating Information	PS4.C: Information Technologies and Instrumentation	Patterns

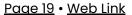

2nd Grade • All Units at a Glance

Table of Contents

Mystery science

All 2nd Grade Units • Units may be taught in any order

Idaho Science Standards:

• 2-LS-2.1

Unit Breakdown:

- 4 Lessons & Activities
- 4 Lesson Assessments
- 4 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Page 20 • Web Link

Idaho Science Standards:

- 2-LS-1.1
- 2-LS-1.2

Unit Breakdown:

- 5 Lessons & Activities
- 4 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Page 21 • Web Link

Idaho Science Standards:

- 2-ESS-1.1
- 2-ESS-2.1
- 2-ESS-2.2
- 2-ESS-2.3

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Page 23 • Web Link

Idaho Science Standards:

- 2-PS-1.1
- 2-PS-1.2
- 2-PS-1.3
- 2-PS-1.4

Unit Breakdown:

- 6 Lessons & Activities
- 6 Lesson Assessments
- 6 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

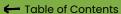
- 1 Anchor Phenomenon
- 6 Anchor Connections
- 1 Performance Task

Animal Biodiversity (Animal Adventures)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Biodiversity & Classification How many different kinds of animals are there?	Foundational for 2-LS-2.1 Make observations of plants and animals to compare the diversity of life in different habitats.	Obtaining, Evaluating, and Communicating Information	LS4.D: Biodiversity and Humans	Patterns
Lesson 2	Habitat Diversity Why would a wild animal visit a playground?	2-LS-2.1 Make observations of plants and animals to compare the diversity of life in different habitats.	Analyzing and Interpreting Data Planning and Carrying Out Investigations	LS4.D: Biodiversity and Humans	Patterns
Lesson 3	Biodiversity, Habitats, & Species Why do frogs say "ribbit"?	2-LS-2.1 Make observations of plants and animals to compare the diversity of life in different habitats.	Analyzing and Interpreting Data Engaging in Argument from Evidence	LS4.D: Biodiversity and Humans	Patterns
Lesson 4	Biodiversity & Engineering How could you get more birds to visit a bird feeder?	2-LS-2.1 Make observations of plants and animals to compare the diversity of life in different habitats.	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions Developing and Using Models	LS4.D: Biodiversity and Humans	Cause and Effect

www.mysteryscience.com/docs/idaho

2nd Grade • Life Science

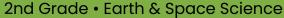


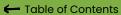
Plant Adaptations (Plant Adventures)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Seed Dispersal How did a tree travel halfway around the world?	Foundational for 2-LS-1.2 Develop a model that demonstrates how plants depend on animals for pollination or the dispersal of seeds.	Developing and Using Models Planning and Carrying Out Investigations	LS2.A: Interdependent Relationships in Ecosystems	Structure and Function
Lesson 2	Animal Seed Dispersal Why do seeds have so many different shapes?	2-LS-1.2 Develop a model that demonstrates how plants depend on animals for pollination or the dispersal of seeds.	Developing and Using Models	LS2.A: Interdependent Relationships in Ecosystems	Structure and Function
Lesson 3	Water, Sunlight, & Plant Growth Could a plant survive without light?	2-LS-1.1 Plan and conduct an investigation to determine the impact of light and water on the growth of plants.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	LS2.A: Interdependent Relationships in Ecosystems	Cause and Effect
Lesson 4	Plant Needs & Habitats How much water should you give a plant?	2-LS-1.1 Plan and conduct an investigation to determine the impact of light and water on the growth of plants.	Planning and Carrying Out Investigations	LS2.A: Interdependent Relationships in Ecosystems	Cause and Effect

www.mysteryscience.com/docs/idaho

2nd Grade • Earth & Space Science

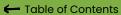



Erosion & Earth's Surface (Work of Water) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Mapping & Earth's Surface Features If you floated down a river, where would you end up?	 2-ESS-2.2 Develop a model to represent the shapes and kinds of land and bodies of water in an area. 2-ESS-2.3 Obtain information to identify where water is found on Earth and that it can be solid or liquid. 	Developing and Using Models Planning and Carrying Out Investigations	ESS2.B: Plate Tectonics and Large-Scale System Interactions ESS2.C: The Roles of Water in Erosion & Earth's Surface	Patterns
Lesson 2	Rocks, Sand, & Erosion Why is there sand at the beach?	2-ESS-2.2 Develop a model to represent the shapes and kinds of land and bodies of water in an area.	Planning and Carrying Out Investigations Developing and Using Models	ESS2.B: Plate Tectonics and Large-Scale System Interactions	Cause and Effect Stability and Change
Lesson 3	Mapping & Severe Weather Where do flash floods happen?	 2-ESS-2.2 Develop a model to represent the shapes and kinds of land and bodies of water in an area. 2-ESS-1.1 Use information from several sources to provide evidence that Earth events can occur quickly or slowly. 	Developing and Using Models	ESS2.B: Plate Tectonics and Large-Scale System Interactions	Patterns
Lesson 4	Erosion, Earth's Surface, & Landforms What's strong enough to make a canyon?	2-ESS-1.1 Use information from several sources to provide evidence that Earth events can occur quickly or slowly.	Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	ESS1.C: The History of Planet Earth ESS2.A: Earth Materials and Systems	Cause and Effect Stability and Change

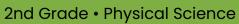
Continued on next page

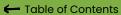
Idaho Science Standards Alignment 2nd Grade • Earth & Space Science



Erosion & Earth's Surface (Work of Water) • Page 2 of 2

	Topic & Guiding	Idaho Science Standards	Science & Eng.	Disciplinary Core Ideas	Crosscutting
	Question	(2022)	Practices (SEPs)	(DCIs)	Concepts (CCCs)
Lesson 5	Erosion & Engineering How can you stop a landslide?	2-ESS-2.1 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	ESS1.C: The History of Planet Earth ESS2.A: Earth Materials and Systems ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Stability and Change Structure and Function





Material Properties (Material Magic) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Material Properties & Engineering Why do we wear clothes?	 2-PS-1.1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 2-PS-1.2 Analyse data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. 	Asking Questions and Defining Problems Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS1.A: Structure and Properties of Matter ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions	Patterns Cause and Effect
Lesson 2	Classify Materials: Insulators Can you really fry an egg on a hot sidewalk?	2-PS-1.2 Analyse data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	PS1.A: Structure and Properties of Matter	Patterns Cause and Effect
Lesson 3	Heating, Cooling, & States of Matter Why are so many toys made out of plastic?	 2-PS-1.2 Analyse data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. 2-PS-1.4 Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. 	Planning and Carrying Out Investigations Analyzing and Interpreting Data	PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions	Cause and Effect Energy and Matter
Lesson 4	Inventions & Engineering What materials might be invented in the future?	2-PS-1.1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.	Constructing Explanations and Designing Solutions	ETS1.B: Developing Possible Solutions	Structure and Function

Continued on next page

Material Properties (Material Magic) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 5	Materials, Properties, & Engineering Could you build a house out of paper?	2-PS-1.3 Make observations to construct an evidence-based argument that objects, when disassembled, may be used to create new objects using the same set of components.	Constructing Explanations and Designing Solutions Developing and Using Models	PS1.A: Structure and Properties of Matter ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Energy and Matter Cause and Effect
Lesson 6	Soil Properties How do you build a city out of mud?	 2-PS-1.1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 2-PS-1.2 Analyse data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. 	Planning and Carrying Out Investigations Analyzing and Interpreting Data	PS1.A: Structure and Properties of Matter	Patterns

Table of Contents

All 3rd Grade Units • Units may be taught in any order.

Idaho Science Standards:

- 3-LS1.1
- 3-LS3.3

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment
- Anchor Layer Adds:
- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Page 27 • Web Link

Idaho Science Standards:

- 3-LS-2.1
- 3-LS-3.1
- 3-LS-3.2
- 3-LS-3.3

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Page 29 · Web Link

Idaho Science Standards:

- 3-ESS-1.1
- 3-ESS-1.2
- 3-ESS-2.1

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

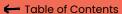
Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Page 31 • Web Link

Idaho Science Standards:

- 3-PS-1.1
- 3-PS-1.2
- 3-PS-1.3
- 3-PS-1.4


Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Life Cycles Unit (Circle of Life)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Animal Life Cycles How is your life like an alligator's life?	3-LS-1.1 Develop models to demonstrate that living things, although they have unique and diverse life cycles, all have birth, growth, reproduction, and death in common.	Developing and Using Models	LS1.B: Growth and Development of Organisms	Patterns
Lesson 2	Environmental Change & Engineering What's the best way to get rid of mosquitoes?	3-LS-3.3 Construct an argument with evidence that in a particular habitat some organisms survive well, some survive less well, and some cannot survive at all.	Obtaining, Evaluating, and Communicating Information Constructing Explanations and Designing Solutions	LS4.D Biodiversity and Humans LS2.C: Ecosystem Dynamics, Functioning, & Resilience ETS1.B: Developing Possible Solutions	Cause and Effect Systems and System Models
Lesson 3	Pollination & Plant Reproduction Why do plants grow flowers?	3-LS-1.1 Develop models to demonstrate that living things, although they have unique and diverse life cycles, all have birth, growth, reproduction, and death in common.	Developing and Using Models Analyzing and Interpreting Data	LS1.B: Growth and Development of Organisms	Patterns Structure and Function
Lesson 4	Fruit, Seeds, & Plant Reproduction Why do plants give us fruit?	3-LS-1.1 Develop models to demonstrate that living things, although they have unique and diverse life cycles, all have birth, growth, reproduction, and death in common.	Analyzing and Interpreting Data	LS1.B: Growth and Development of Organisms	Patterns Structure and Function
Lesson 5	Plant Life Cycles Why are there so many different kinds of flowers?	3-LS-1.1 Develop models to demonstrate that living things, although they have unique and diverse life cycles, all have birth, growth, reproduction, and death in common.	Developing and Using Models	LS1.B: Growth and Development of Organisms	Patterns

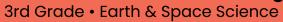
3rd Grade • Life Science

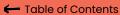
← Table of Contents

Heredity, Survival, & Selection Unit (Fates of Traits) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	New! → Traits & Inheritance How do you identify a mysterious fruit?	Foundational for 3-LS-3.1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.	Analyzing and Interpreting Data	LS3.A: Inheritance of Traits	Patterns
Lesson 2	Trait Variation, Inheritance, & Artificial Selection What do dogs and pigeons have in common?	3-LS-3.1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.	Analyzing and Interpreting Data	LS3.A: Inheritance of Traits LS3.B: Variation of Traits	Patterns
Lesson 3	New! New! New! New! New! New! New! New!	 3-LS-3.1 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. 3-LS-3.3 Construct an argument with evidence that in a particular habitat some organisms survive well, some survive less well, and some cannot survive at all. 	Explanations and Designing Solutions Analyzing and Interpreting Data Using Mathematics and Computational Thinking	LS3.A: Inheritance of Traits LS3.B: Variation of Traits LS4.C: Adaptation	Cause and Effect Patterns Stability and Change

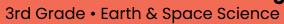
Continued on next page

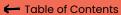




Heredity, Survival, & Selection Unit (Fates of Traits) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 4	Animal Groups & Survival Why do dogs wag their tails?	3-LS-2.1 Construct an argument that some animals form groups that help members survive.	Obtaining, Evaluating, and Communicating Information Engaging in Argument from Evidence	LS2.D: Social Interactions and Group Behavior	Cause and Effect
Lesson 5	Traits & Environmental Variation How long can people (and animals) survive in outer space?	3-LS-3.2 Use evidence to support the explanation that traits can be influenced by the environment.	Constructing Explanations and Designing Solutions	LS3.A: Inheritance of Traits LS3.B: Variation of Traits	Cause and Effect





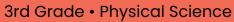
Weather & Climate Unit (Stormy Skies) • Page 1 of 2

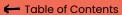
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Water Cycle & States of Matter Where do clouds come from?	Foundational for 3-ESS-1.1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.	Planning and Carrying Out Investigations Developing and Using Models	ESS2.D: Weather and Climate	Structure and Function Stability and Change
Lesson 2	Local Weather Patterns & Weather Prediction How can we predict when it's going to storm?	3-ESS-1.1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.	Analyzing and Interpreting Data	ESS2.D: Weather and Climate	Patterns
Lesson 3	Seasonal Weather Patterns Where's the best place to build a snow fort?	3-ESS-1.1 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.	Analyzing and Interpreting Data	ESS2.D: Weather and Climate	Patterns

Continued on next page

Weather & Climate Unit (Stormy Skies) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 4	Climate & Global Weather Patterns Why are some places always hot?	3-ESS-1.2 Obtain and combine information to describe climates in different regions of the world.	Obtaining, Evaluating, and Communicating Information Analyzing and Interpreting Data	ESS2.D: Weather and Climate	Patterns
Lesson 5	Natural Hazards & Engineering How can you keep a house from blowing away in a windstorm?	3-ESS-2.1 Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions Analyzing and Interpreting Data	ESS3.B: Natural Hazards ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Cause and Effect


3rd Grade • Physical Science


← Table of Contents

Forces, Motion, & Magnets Unit (Invisible Forces) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Balanced & Unbalanced Forces How could you win a tug-of-war against a bunch of adults?	3-PS-1.1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.	Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS2.A: Forces and Motion PS2.B: Types of Interactions	Cause and Effect
Lesson 2	Balanced Forces & Engineering What makes bridges so strong?	Foundational for 3-PS-1.1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Structure and Function
Lesson 3	Patterns of Motion, Gravity, & Friction How high can you swing on a flying trapeze?	3-PS-1.2 Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.	Developing and Using Models Planning and Carrying Out Investigations	PS2.A: Forces and Motion	Patterns Cause and Effect

Continued on next page

Forces, Motion, & Magnets Unit (Invisible Forces) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 4	Magnets & Forces What can magnets do?	3-PS-1.3 Ask questions to determine cause and effect relationships of static electricity or magnetic interactions and between two objects not in contact with each other.	Asking Questions and Defining Problems	PS2.B: Types of Interactions	Cause and Effect
Lesson 5	Magnets & Engineering How can you unlock a door using a magnet?	3-PS-1.4 Define a problem that can be solved by applying scientific ideas about magnets.	Asking Questions and Defining Problems Constructing Explanations and Designing Solutions	PS2.B: Types of Interactions ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Cause and Effect

All 4th Grade Units • Units may be taught in any order

Page 34 • Web Link

Page 35 • Web Link

Page 36 • Web Link

Page 37 • Web Link

Page 38 • Web Link

Page 40 • Web Link

Idaho Science Standards:

- 4-LS-1.1
- 4-LS-1.2 • 4-PS-2.2

Idaho Science Standards:

- 4-LS-1.1
- 4-LS-1.2

• 4-ESS-1.1

- 4-ESS-2.1
- 4-ESS-2.2

Idaho Science

Standards:

• 4-ESS-3.2

Idaho Science Standards:

- 4-PS-2.1
- 4-PS-2.3

Idaho Science Standards:

- 4-PS-1.1
- 4-PS-1.2
- 4-PS-1.3
- 4-PS-1.4

Idaho Science Standards:

- 4-PS-1.4

Unit Breakdown:

- 4 Lessons & Activities
- 4 Lesson Assessments
- 4 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 4 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 4 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

- 4-ESS-3.1
- 4-PS-1.2

Unit Breakdown:

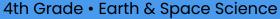
- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

Human Body, Vision, & The Brain Unit (Human Machine)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Muscles & Skeleton Why do your biceps bulge?	4-LS-1.1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.	Developing and Using Models Constructing Explanations and Designing Solutions	LS1.A: Structure and Function	Systems and System Models Cause and Effect
Lesson 2	Light, Eyes, & Vision What do people who are blind see?	 4-PS-2.2 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. 4-LS-1.1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. 	Developing and Using Models Constructing Explanations and Designing Solutions	LS1.A: Structure and Function PS4.B: Electromagnetic Radiation	Systems and System Models Cause and Effect
Lesson 3	Structure & Function of Eyes How can some animals see in the dark?	 4-PS-2.2 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. 4-LS-1.1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. 	Planning and Carrying Out Investigations Developing and Using Models Constructing Explanations and Designing Solutions	LS1.A: Structure and Function PS4.B: Electromagnetic Radiation	Systems and System Models Cause and Effect
Lesson 4	Brain, Nerves, & Information Processing How does your brain control your body?	4-LS-1.2 Use a model to describe how animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	LS1.D: Information Processing	Systems and System Models


4th Grade • Life Science

★ Animal & Plant Adaptations Unit (Animal & Plant Adaptations)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Animal Adaptations Why do some sea creatures look so strange?	4-LS-1.1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.	Engaging in Argument from Evidence	LS1.A: Structure and Function	Systems and System Models
Lesson 2	Learned Behavior & Instinct Why would a sea turtle eat a plastic bag?	4-LS-1.2 Use a model to describe how animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.	Developing and Using Models Constructing Explanations and Designing Solutions	LS1.D: Information Processing	Systems and System Models
Lesson 3	Plant Adaptations Why don't the same trees grow everywhere?	4-LS-1.1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.	Engaging in Argument from Evidence Developing and Using Models	LS1.A: Structure and Function	Systems and System Models

Idaho Science Standards Alignment 4th Grade • Earth & Space Science

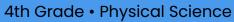
Earth's Features & Processes Unit (Birth of Rocks)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Volcanoes & Patterns of Earth's Features Could a volcano pop up where you live?	4-ESS-2.2 Analyze and interpret data from maps to describe patterns of Earth's features.	Analyzing and Interpreting Data Engaging in Argument from Evidence	ESS2.B: Plate Tectonics and Large-Scale System Interactions	Patterns
Lesson 2	Volcanoes & Rock Cycle Why do some volcanoes explode?	4-ESS-1.1 Identify evidence from patterns in rock formations and fossils in rock layers for changes in a landscape over time to support an explanation for changes in a landscape over time.	Constructing Explanations and Designing Solutions	ESS1.C: The History of Planet Earth	Cause and Effect
Lesson 3	Weathering & Erosion Will a mountain last forever?	4-ESS-2.1 Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	ESS2.A: Earth Materials and Systems ESS2.E: Biogeology	Cause and Effect
Lesson 4	Sedimentary Rock & Fossils What did your town look like 100 million years ago?	4-ESS-1.1 Identify evidence from patterns in rock formations and fossils in rock layers for changes in a landscape over time to support an explanation for changes in a landscape over time.	Constructing Explanations and Designing Solutions Developing and Using Models	ESS1.C: The History of Planet Earth	Patterns
Lesson 5	Erosion, Natural Hazards, & Engineering How could you survive a landslide?	4-ESS-3.2 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.	Constructing Explanations and Designing Solutions	ESS3.B: Natural Hazards ETS1.B: Designing Solutions to Engineering Problems	Cause and Effect

4th Grade • Physical Science

Sound, Waves, & Communication Unit (Waves of Sound)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Pattern Transfer & Technology How do you send a secret code?	4-PS-2.3 Generate and compare multiple solutions that use patterns to transfer information.	Constructing Explanations and Designing Solutions	PS4.C: Information Technologies and Instrumentation ETS1.C: Optimizing the Design Solution	Patterns
Lesson 2	Sound, Vibration, & Engineering How far can a whisper travel?	Foundational for 4-PS-2.1 Develop a model of a simple mechanical wave to describe patterns of amplitude and wavelength and that waves can cause objects to move.	Developing and Using Models Planning and Carrying Out Investigations	PS4.A: Wave Properties ETS1.B: Developing Possible Solutions	Patterns
Lesson 3	Sound & Vibrations What would happen if you screamed in outer space?	Foundational for 4-PS-2.1 Develop a model of a simple mechanical wave to describe patterns of amplitude and wavelength and that waves can cause objects to move.	Developing and Using Models	PS4.A: Wave Properties	Patterns
Lesson 4	Sound Waves & Wavelength Why are some sounds high and some sounds low?	4-PS-2.1 Develop a model of a simple mechanical wave to describe patterns of amplitude and wavelength and that waves can cause objects to move.	Developing and Using Models	PS4.A: Wave Properties	Patterns


4th Grade • Physical Science

← Table of Contents

✓ Energy & Energy Transfer Unit (Energizing Everything) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Speed & Energy How is your body similar to a car?	4-PS-1.1 Use evidence to construct an explanation relating the speed of an object to the energy of that object.	Analyzing and Interpreting Data Constructing Explanations and Designing Solutions	PS3.A: Definitions of Energy	Energy and Matter Systems and System Models
Lesson 2	Gravitational Energy, Speed, & Collisions What makes roller coasters go so fast?	 4-PS-1.1 Use evidence to construct an explanation relating the speed of an object to the energy of that object. 4-PS-1.3 Ask questions and predict outcomes about the changes in energy that occur when objects collide. 	Developing and Using Models Analyzing and Interpreting Data	PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer	Energy and Matter Systems and System Models
Lesson 3	Collisions & Energy Transfer How can marbles save the world?	 4-PS-1.3 Ask questions and predict outcomes about the changes in energy that occur when objects collide. 4-PS-1.2 Make observations to provide evidence that energy can be transferred by heat, sound, light, and electric currents. 	Asking Questions and Defining Problems	PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces	Energy and Matter
Lesson 4	Energy Transfer & Engineering Could you knock down a building using only dominoes?	4-PS-1.2 Make observations to provide evidence that energy can be transferred by heat, sound, light, and electric currents.	Developing and Using Models	PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces ETS1.A: Defining and Delimiting Engineering Problems	Energy and Matter

Continued on next page

✓ Energy & Energy Transfer Unit (Energizing Everything) • Page 2 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 5	Energy Transfer & Engineering	4-PS-1.4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.	Developing and Using Models	PS3.A: Definitions of Energy	Energy and Matter
	Can you build a chain reaction machine?			PS3.C: Relationship Between Energy and Forces	
				ETS1.A: Defining and Delimiting Engineering Problems	
				ETS1.B: Developing Possible Solutions	
				ETS1.C: Optimizing the Design Solution	

4th Grade • Physical Science

← Table of Contents

✓★ Electricity, Light, & Heat Unit (Electricity, Light & Heat)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Renewable Energy & Natural Resources What's the best way to light up a city?	4-ESS-3.1 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.	Obtaining, Evaluating, and Communicating Information Using Mathematics and Computational Thinking	ESS3.A: Natural Resources	Energy and Matter Cause and Effect
Lesson 2	Electrical Energy What if there were no electricity?	4-PS-1.4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.	Constructing Explanations and Designing Solutions Developing and Using Models	PS3.D: Energy in Chemical Processes and Everyday Life ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Energy and Matter
Lesson 3	Heat Energy & Energy Transfer How long did it take to travel across the country before cars and planes?	 4-PS-1.2 Make observations to provide evidence that energy can be transferred by heat, sound, light, and electric currents. 4-PS-1.4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another 	Planning and Carrying Out Investigations	PS3.B: Conservation of Energy and Energy Transfer PS3.D: Energy in Chemical Processes and Everyday Life	Energy and Matter

5th Grade • All Units at a Glance

← Table of Contents

All 5th Grade Units • Units may be taught in any order

Page 42 • Web Link

Idaho Science Standards:

• 5-LS-2.1

Page 43 • Web Link

Idaho Science Standards:

- 5-LS-1.1
- 5-LS-2.4
- 5-FSS-3.1
- 5-PS-3.1

Page 45 • Web Link

Idaho Science Standards:

- 5-ESS-2.1
- 5-ESS-2.2
- 5-LS-2.3
- 5-PS-1.2

Page 46 • Web Link

Idaho Science Standards:

• 5-ESS-1.2

Page 47 • Web Link

Standards:

- 5-ESS-1.1
- 5-PS-2.1

Page 48 • Web Link

Idaho Science Standards:

- 5-PS-1.1
- 5-PS-1.2
- 5-PS-1.4

Unit Breakdown:

- 3 Lessons & Activities
- 3 Lesson Assessments
- 3 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 3 Anchor Connections
- 1 Performance Task

- 7 Lessons & Activities
- 7 Lesson Assessments
- 7 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 7 Anchor Connections
- 1 Performance Task

Unit Breakdown:

Anchor Layer Adds:

• 1 Anchor Phenomenon

Unit Breakdown:

• 5 Lessons & Activities

• 5 Extension Blocks

• 1 Unit Assessment

• 5 Lesson Assessments

- 5 Anchor Connections
- 1 Performance Task

- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments

Idaho Science

Unit Breakdown:

3 Lessons & Activities

3 Extension Blocks

• 1 Unit Assessment

Anchor Layer Adds:

• 1 Performance Task

• 3 Lesson Assessments

• 1 Anchor Phenomenon

• 3 Anchor Connections

- - 5-PS-1.3

Unit Breakdown:

- 5 Lessons & Activities
- 5 Lesson Assessments
- 5 Extension Blocks
- 1 Unit Assessment

Anchor Layer Adds:

- 1 Anchor Phenomenon
- 5 Anchor Connections
- 1 Performance Task

5th Grade - Life Science

This unit is found under 3rd grade on our site, but we recommend teaching these lessons in 5th grade if you are following Idaho Standards.

Fossils & Changing Environments Unit (Animals Through Time)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Habitats, Fossils, & Environments Over Time Where can you find whales in a desert?	5-LS-2.1 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Analyzing and Interpreting Data	LS4.A: Evidence of Common Ancestry and Diversity	Scale, Proportion, and Quantity
Lesson 2	Fossil Evidence & Dinosaurs How do we know what dinosaurs looked like?	5-LS-2.1 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Analyzing and Interpreting Data Engaging in Argument from Evidence	LS4.A: Evidence of Common Ancestry and Diversity	Structure and Function Patterns
Lesson 3	Trace Fossil Evidence & Animal Movement Can you outrun a dinosaur?	5-LS-2.1 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.	Using Mathematics and Computational Thinking Planning and Carrying Out Investigations	LS4.A: Evidence of Common Ancestry and Diversity	Patterns

Idaho Specific Standard:

5-LS-2.2 Construct an argument with evidence for how variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

This standard is covered in 3rd Grade with the Mystery Science lesson How could a lizard's toes help it survive?

Idaho Specific Standard:

5-LS-2.3 Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals living there may change.

This standard is covered in 3rd Grade with the Mystery Science lesson What's the best way to get rid of mosquitoes?

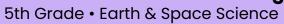
5th Grade • Life Science

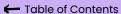
← Table of Contents

Ecosystems & The Food Web Unit (Web of Life) • Page 1 of 2

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Food Chains, Producers, & Consumers Why would a hawk move to New York City?	5-LS-2.4 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	Developing and Using Models	LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	Energy and Matter Systems and System Models
Lesson 2	Matter & Plant Growth What do plants eat?	 5-LS-1.1 Support an argument that plants get what they need for growth chiefly from air, water, and energy from the Sun. 5-LS-2.4 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. 	Planning and Carrying Out Investigations Analyzing and Interpreting Data Constructing Explanations and Designing Solutions	LS1.C. Organization for Matter and Energy Flow in Organisms LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	Cause and Effect Energy and Matter
Lesson 3	Decomposers & Matter Cycle Where do fallen leaves go?	5-LS-2.4 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	Planning and Carrying Out Investigations	LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	Energy and Matter

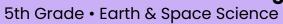
Continued on next page

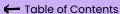

5th Grade • Life Science



Ecosystems & The Food Web Unit (Web of Life) • Page 2 of 2

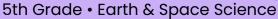
	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 4	Decomposers, Nutrients, & Matter Cycle	5-LS-2.4 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	Planning and Carrying Out Investigations	LS2.A: Interdependent Relationships in Ecosystems	Energy and Matter
	Do worms really eat dirt?			LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	
Lesson 5	Ecosystems & Matter Cycle Why do you have to	5-LS-2.4 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.	Developing and Using Models	LS2.A: Interdependent Relationships in Ecosystems	Systems and System Models Energy and Matter
	clean a fish tank but not a pond?			LS2.B: Cycles of Matter and Energy Transfer in Ecosystems	3, 4 4 4
Lesson 6	Protecting Environments How can we protect Earth's environments?	5-ESS-3.1 Obtain and combine information about ways communities protect Earth's resources and environment using scientific ideas.	Obtaining, Evaluating, and Communicating Information	ESS3.C: Human Impacts on Earth Systems	Systems and System Models
Lesson 7	Food Webs & Flow of Energy	5-PS-3.1 Use models to describe the energy in animals' food (usd for body repair, growth, motion, and to maintain body warmth) was once energy from	Developing and Using Models	PS3.D: Energy in Chemical Processes and Everyday Life	Energy and Matter Systems and System
	Why did the dinosaurs go extinct?	the Sun.	Constructing Explanations and Designing Solutions	LS1.C. Organization for Matter and Energy Flow in Organisms	Models

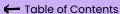




Water Cycle & Earth's Systems Unit (Watery Planet)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Hydrosphere & Water Distribution How much water is in the world?	5-ESS-2.2 Describe and graph the relative amounts of fresh and salt water in various reservoirs, to interpret and analyze the distribution of water on Earth.	Analyzing and Interpreting Data Using Mathematics and Computational Thinking	ESS2.C: The Roles of Water in Earth's Surface Processes	Scale, Proportion, and Quantity
Lesson 2	Mixtures & Solutions How much salt is in the ocean?	5-PS-1.2 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.	Developing and Using Models Using Mathematics and Computational Thinking	PS1.A : Structure and Properties of Matter	Scale, Proportion, and Quantity
Lesson 3	Groundwater as a Natural Resource When you turn on the faucet, where does the water come from?	5-ESS-2.2 Describe and graph the relative amounts of fresh and salt water in various reservoirs, to interpret and analyze the distribution of water on Earth.	Obtaining, Evaluating, and Communicating Information Engaging in Argument from Evidence	ESS2.C: The Roles of Water in Earth's Surface Processes	Patterns
Lesson 4	Water Cycle Can we make it rain?	5-ESS-2.1 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.	Developing and Using Models Planning and Carrying Out Investigations	ESS2.A: Earth Materials and Systems	Systems and System Models
Lesson 5	Natural Disasters & Engineering How can you save a town from a hurricane?	5-LS-2.3 Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals living there may change.	Asking Questions and Defining Problems Obtaining, Evaluating, and Communicating Information Using Mathematics and Computational Thinking	ETS1.A: Defining and Delimiting Engineering Problems ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution	Systems and System Models





✓ Earth & Space Patterns Unit (Spaceship Earth)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Day, Night, & Earth's Rotation How fast does the Earth spin?	Foundational for 5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Developing and Using Models Using Mathematics and Computational Thinking	ESS1.B: Earth and the Solar System	Patterns Cause and Effect
Lesson 2 3 4 7 6 5	Earth's Rotation & Daily Shadow Patterns Who set the first clock?	5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	ESS1.B: Earth and the Solar System	Patterns Cause and Effect
Lesson 3	Seasonal Changes & Shadow Length How can the Sun tell you the season?	5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Analyzing and Interpreting Data Engaging in Argument from Evidence	ESS1.B: Earth and the Solar System	Patterns Cause and Effect
Lesson 4	Seasonal Patterns & Earth's Orbit Why do the stars change with the seasons?	5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Developing and Using Models Constructing Explanations and Designing Solutions	ESS1.B: Earth and the Solar System	Patterns Cause and Effect
Lesson 5	Moon Phases, Lunar Cycle Why does the Moon change shape?	5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.	Developing and Using Models Planning and Carrying Out Investigations	ESS1.B: Earth and the Solar System	Patterns Cause and Effect

Idaho Science Standards Alignment 5th Grade • Earth & Space Science

✓ Stars & Planets Unit (Stars & Planets)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Solar System & Sun Brightness How can the Sun help us explore other planets?	5-ESS1-1. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.	Developing and Using Models Engaging in Argument from Evidence	ESS1.A: The Universe and its Stars	Scale, Proportion, and Quantity Systems and System Models
Lesson 2	Gravity Why is gravity different on other planets?	5-PS2-1. Support an argument that the gravitational force exerted by Earth on objects is directed down.	Using Mathematics and Computational Thinking Analyzing and Interpreting Data	PS2.B: Types of Interactions	Patterns Cause and Effect
Lesson 3	Star Brightness & Habitable Planets Could there be life on other planets?	5-ESS1-1. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.	Obtaining, Evaluating, and Communicating Information Engaging in Argument from Evidence	ESS1.A: The Universe and its Stars	Scale, Proportion, and Quantity

5th Grade • Physical Science

← Table of Contents

Chemical Reactions & Properties of Matter Unit (Chemical Magic)

	Topic & Guiding Question	Idaho Science Standards (2022)	Science & Eng. Practices (SEPs)	Disciplinary Core Ideas (DCIs)	Crosscutting Concepts (CCCs)
Lesson 1	Conservation of Matter Are magic potions real?	Foundational for 5-PS-1.1 Develop a model to describe that matter is made of particles too small to be seen. Foundational for 5-PS-1.2 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.	Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions	Cause and Effect Scale, Proportion, and Quantity
Lesson 2	Dissolving & Particulate Nature of Matter Could you transform something worthless into gold?	 5-PS-1.1 Develop a model to describe that matter is made of particles too small to be seen. 5-PS-1.2 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. 	Planning and Carrying Out Investigations Using Mathematics and Computational Thinking	PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions	Energy and Matter Scale, Proportion, and Quantity
Lesson 3	Properties of Matter: Acids What would happen if you drank a glass of acid?	5-PS-1.3 Make observations and measurements to identify materials based on their properties.	Planning and Carrying Out Investigations Analyzing and Interpreting Data	PS1.A : Structure and Properties of Matter	Cause and Effect
Lesson 4	Chemical Reactions What do fireworks, rubber, and Silly Putty have in common?	5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances.	Planning and Carrying Out Investigations Constructing Explanations and Designing Solutions	PS1.B: Chemical Reactions	Cause and Effect
Lesson 5	Gases & Particle Models Why do some things explode?	5-PS-1.1 Develop a model to describe that matter is made of particles too small to be seen.	Planning and Carrying Out Investigations Developing and Using Models	PS1.A : Structure and Properties of Matter	Scale, Proportion, and Quantity