Mystery Science Alignment with West Virginia Science Standards

Mystery Science is a hands-on curriculum that aligns with the Next Generation Content Standards and Objectives for Science in West Virginia Schools.

Mystery Science's units of study contain:

- Hands-on, easy-prep activities with EVERY lesson
- Engaging, real-world investigative phenomena
- Thoughtful discussions to build background knowledge
- Lesson & unit assessments to evaluate comprehension
- Curated, cross-curricular extensions

Mystery Science also offers the <u>Anchor Layer</u>, which enriches the unit with an anchor phenomenon, incorporates anchor connections after each lesson, & concludes the unit with a performance task.

Kindergarten		3rd Grade	
Life Science Animal Needs Plant Needs Earth & Space Science Severe Weather Weather Patterns Physical Science Sunlight & Warmth Pushes & Pulls	Page 3 Page 5 Page 7	Life Science Life Cycles Heredity, Survival, & Selection Earth & Space Science Weather & Climate Physical Science Forces, Motion, & Magnets Stars & Planets	Page 18 Page 21 Page 22
1st Grade		4th Grade	
Life Science Animal Traits & Survival Plant Traits & Survival Earth & Space Science Day Patterns Night Patterns Physical Science Light, Sound, & Communication	Page 9 Page 11 Page 13	Life Science Human Body, Vision, & The Brain Animal & Plant Adaptations Earth & Space Science Fossils & Changing Environments Earth's Features & Processes Physical Science Sound, Waves, & Communication Energy & Energy Transfer Electricity, Light, & Heat	Page 23 Page 25 Page 25
2nd Grade		5th Grade	
Life Science Animal Biodiversity & Habitats Plant Growth & Interactions Earth & Space Science Erosion & Earth's Surface Physical Science Material Properties States of Matter	Page 14 Page 16 Page 17	Life Science Ecosystems & The Food Web Earth & Space Science Water Cycle & Earth's Systems Earth & Space Patterns Stars & Planets Physical Science Chemical Reactions & Properties of Matter	Page 28 Page 30 Page 34 Page 2 of 34

Animal Needs (Animal Secrets)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Animal Needs: Food Why do woodpeckers peck wood?	Students obtain information through virtual observations of different animal behaviors. They use this evidence to explain that one of the basic needs of animals is food.	S.K.3 Use observations to describe patterns of what plants and animals (including humans) need to survive.
Lesson 2	Animal Needs: Shelter Read-Along Where do animals live?	Students obtain information through media about how different animal homes are built. They use this evidence to explain that animals need shelter.	S.K.5 Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.
Lesson 3	Animal Needs: Safety How can you find animals in the woods?	Students obtain information through virtual observations of different animal behaviors. They use this evidence to explain that one of the basic needs of animals is shelter.	S.K.3 Use observations to describe patterns of what plants and animals (including humans) need to survive.
Lesson 4 in	Animals & Changing the Environment Read-Along How do animals make their homes in the forest?	Students take a nature walk to look for evidence of animal homes.	S.K.4 Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Plant Needs (Plant Secrets)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Living & Nonliving Are plants alive?	Students make observations of plants in order to identify their needs and that they are, in fact, living thin	S.K.3 Use observations to describe patterns of what plants and animals (including humans) need to survive.
Lesson 2	Plant Needs: Water & Light How do plants and trees grow?	Students investigate to determine the basic needs of plants. They observe to identify ways young plants resemble the parent plant and how the plant changes as it proceeds through its life cycle.	S.K.3 Use observations to describe patterns of what plants and animals (including humans) need to survive.
Lesson 3	Human Impacts on the Environment Read-Along Why would you want an old log in your backyard?	Students obtain evidence of living organisms by virtually keeping watch of a log and the living things that visit it.	S.K.6 Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Severe Weather (Wild Weather)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson1 Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly	Severe Weather & Preparation Read-Along How can you get ready for a big storm?	Students obtain information of different types of severe weather to observe and describe how the weather changes during these events and what students can do to prepare and stay safe.	S.K.8 Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.
Lesson 2	Wind & Storms Have you ever watched a storm?	Students create a simple tool that allows them to observe how hard the wind is blowing. They use this tool to observe weather changes and describe the pattern of faster wind speeds right before a storm.	S.K.8 Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.
Lesson 3	Weather Conditions How many different kinds of weather are there?	Students obtain information through observations of the weather. They communicate the information by acting as weather watchers and creating drawings of the weather conditions.	S.K.7 Use and share observations of local weather conditions to describe patterns over time.

Weather Patterns (Circle of Seasons)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Daily Weather Patterns Read-Along How do you know what to wear for the weather?	Students track the weather daily and analyze the data by collecting, recording, and sharing their observations to observe patterns of weather changing throughout the day and from day-to-day.	S.K.7 Use and share observations of local weather conditions to describe patterns over time.
Lesson 2	Seasonal Weather Patterns What will the weather be like on your birthday?	Students evaluate information in a series of unnamed drawings of each season. They use these clues to identify characteristics of each season and describe the yearly cyclical pattern.	S.K.7 Use and share observations of local weather conditions to describe patterns over time.
Lesson 3	Animals Changing Their Environment Why do birds lay eggs in the spring?	Students identify the reasons why birds lay eggs in the spring. Then, they develop a bird nest model and use this model as evidence for how animals can change the environment to meet their needs.	S.K.4 Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Sunlight & Warmth (Sunny Skies)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Sunlight, Heat, & Earth's Surface Read-Along How could you walk barefoot across hot pavement without burning your feet?	Students make observations of the pavement heating up after being warmed by the Sun. Then, they design a solution to build a shade structure that can reduce the warming effect of sunlight.	 S.K.9 Make observations to determine the effect of sunlight on Earth's surface. S.K.10 Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.
Lesson 2	Sunlight, Warming, & Engineering How could you warm up a frozen playground?	Students carry out an investigation to test which materials can redirect the light and heat of sunlight. (*This lesson has students increase the warming effect of sunlight on an area.)	 S.K.9 Make observations to determine the effect of sunlight on Earth's surface. S.K.10 Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area. S.K.11 S.K.13
Lesson 3	Sunlight & Warmth Why does it get cold in winter?	Students construct an explanation for why marshmallows melt in one car and not in another car. Then, they conduct a virtual investigation to determine that the warmth of the Sun is the cause of the melted marshmallows.	S.K.9 Make observations to determine the effect of sunlight on Earth's surface.

Pushes & Pulls (Force Olympics)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Pushes & Pulls What's the biggest excavator?	Students observe different machines and use those observations as evidence for why machines make work easier.	Foundational for S.K.1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Lesson 2	Pushes, Pulls, & "Work Words" Read-Along Why do builders need so many big machines?	Students observe construction equipment being used in different ways to move objects.	Foundational for S.K.1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Lesson 3	Motion, Speed, & Strength How can you knock down a wall made of concrete?	Students carry out an investigation to determine how far back they should pull a model wrecking ball to knock down a wall, but not the houses behind it.	S.K.1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
Lesson 4 or	Speed & Direction of Force Read-Along How can you knock down the most bowling pins?	Students play a game of bumper bowling to observe the way that objects can move in straight lines, zigzags, and back and forth.	S.K.2 Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.
Lesson 5	Direction of Motion & Engineering How can we protect a mountain town from falling rocks?	Students conduct an investigation of how to protect a town from a falling boulder. They design a solution to safely guide the direction of the boulder away from the town.	S.K.2 Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull. S.K.12
Lesson 6	Forces & Engineering Read-Along How could you invent a trap?	Students define a problem they would like to solve and then design a solution using what they know about the locations of objects and how they can move.	S.K.1 Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Animal Traits & Survival (Animal Superpowers)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Parent & Offspring Traits How can you help a lost baby animal find its parents?	Students observe the traits of adult and baby animals in order to construct an explanation that most young animals are like, but not exactly like, their parents.	S.1.6 Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.
Lesson 2	New! Offspring Trait Variation Can you predict what an animal's babies will look like?	Students observe the traits of parent and baby animals to construct an explanation that offspring look similar to their parents, but can also vary in many ways. They predict what a puppy might look like based on the traits of the parent dogs.	S.1.6 Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.
Lesson 3 A Rad-Along Water United States Burgers by Key Key Key Burgers by Key Key	Animal Behavior & Offspring Survival Read-Along Why do baby ducks follow their mother?	Students obtain information about the behaviors of animal parents that help their offspring survive.	S.1.5 Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.
Lesson 4	Animal Structures & Survival Why do birds have beaks?	Students investigate how different bird beaks are well suited for eating different kinds of food. They explain which beak would help a particular bird survive in a particular environment.	S.1.7 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.
Lesson 5	Camouflage & Animal Survival Why are polar bears white?	Students use observations of animal parents and their offspring to construct an explanation about young plants and animals being similar, but not identical, to their parents.	S.1.7 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

9

Plant Traits & Survival (Plant Superpowers)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Plant Traits & Offspring What will a baby plant look like when it grows up?	Students observe seedlings and adult plants and use their observations to identify the pattern that young plants are similar to their parent plants.	S.1.6 Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.
Lesson 2	Plant Survival & Engineering Why don't trees blow down in the wind?	Students examine plant structures like roots, branches, and leaves that keep trees from blowing down. They use their observations to design their own tree-inspired umbrellas that stay up in the wind.	 S.1.7 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. S.1.11 S.1.12
Lesson 3	Plant Movement & Survival Read-Along What do sunflowers do when you're not looking?	Students learn how plants respond to light. They conduct an investigation to compare how the parts of a plant respond to light.	S.1.7 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Day Patterns (Sun & Shadows)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Sun, Shadows, & Daily Patterns Could a statue's shadow move?	Students observe how shadows change as time passes, or as the Sun moves across the sky. They analyze how to move a light source to change the shape and direction of shadows, constructing an explanation of what causes a shadow to move.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Lesson 2 We way therein We w	Sun, Shadows, & Daily Patterns Read-Along What does your shadow do when you're not looking?	Students conduct an investigation to gather information about how their shadow changes throughout the day.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Lesson 3	Sun & Daily Patterns How can the Sun help you if you're lost?	Students develop a Sun Finder, a model of the Sun's movement across the sky. They use this model to reason about how the Sun can help guide them during the day.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Lesson 4 od?	Daylight & Seasonal Patterns Read-Along Why do you have to go to bed early in the summer?	Students obtain information about the seasonal patterns of sunrise and sunset.	S.1.9 Make observations at different times of year to relate the amount of daylight to the time of year.

Night Patterns (Moon & Stars)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Moon Phases & Patterns When can you see the full moon?	Students record observations of the Moon's shape using a series of photos collected over the course of four weeks. Using this information, students discover that the Moon follows a cyclical pattern, which they can use to predict when a full moon will appear.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Lesson 2	Stars & Daily Patterns Why do stars come out at night?	Students develop and use a model of the Big Dipper in the night sky. After conducting a simple investigation, students construct an explanation for why stars are only visible in the night sky.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.
Lesson 3	Stars & Seasonal Patterns Read-Along How can stars help you if you get lost?	Students observe that groups of stars in the sky form a pattern: constellations. Even though the Big Dipper changes its spot in the sky in different seasons, it always points to the North Star.	S.1.8 Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Light, Sound, & Communication (Lights & Sounds)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Sounds & Vibrations How do they make silly sounds in cartoons?	Students explore how to make different sounds with everyday objects. They construct an explanation that objects vibrate when they make a sound, and if the vibration stops, the sound stops.	S.1.1 Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
Lesson 2	Sounds & Vibrations Read-Along Where do sounds come from?	Students create three different sound makers and construct an explanation about where the vibrations are happening in each sound experiment.	S.1.1 Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
Lesson 3	Light, Materials, Transparent & Opaque What if there were no windows?	Students investigate the properties of different materials that they can and cannot see through. Then they create a stained glass window using tissue paper to explore how materials interact with light.	S.1.3 Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.
Lesson 4 A back dage Grave A back dage Grave A back dage Grave A back dage Grave	Light & Illumination Read-Along Can you see in the dark?	Students look inside a completely dark box to determine if they can see the shape of the object inside. They allow more light into the box to illuminate the object and allow them to see it. Students use their observations explain that objects need light to be seen.	S.1.2 Make observations to construct an evidence-based account that objects can be seen only when illuminated.
Lesson 5	Light, Communication, & Engineering How could you send a secret message to someone far away?	Students are presented with the problem that they need to send a message at night, without using noise. They design a solution to create a color-coded message system and communicate with light signals.	 S.1.4 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance. S.1.10 S.1.12
Lesson 6	Lights, Sounds, & Communication Read-Along How do boats find their way in the fog?	Students obtain information about light and sound signals. They analyze different sounds with eyes closed to determine which type of sound they hear.	S.1.4 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.

Animal Biodiversity & Habitats(Animal Adventures)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Biodiversity & Classification How many different kinds of animals are there?	Students observe the traits of different animals and use that information to organize them into groups based on their characteristics.	Foundational for S.2.7 Make observations of plants and animals to compare the diversity of life in different habitats.
Lesson 2	Habitat Diversity Why would a wild animal visit a playground?	Students observe animals, plants, and the physical characteristics of two different habitats. They collect and analyze data to compare the biodiversity between the two habitats.	S.2.7 Make observations of plants and animals to compare the diversity of life in different habitats.
Lesson 3	Biodiversity, Habitats, & Species Why do frogs say "ribbit"?	Students identify frogs based on their unique calls and use that information to determine the level of frog species diversity within multiple habitats.	S.2.7 Make observations of plants and animals to compare the diversity of life in different habitats.
Lesson 4	Biodiversity & Engineering How could you get more birds to visit a bird feeder?	Students investigate which kinds of birds are likely to visit a bird feeder based on what they eat and design and build a prototype bird feeder that attracts a specific type of bird.	S.2.7 Make observations of plants and animals to compare the diversity of life in different habitats.S.2.12S.2.13

Plant Growth & Interactions (Plant Adventures)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Seed Dispersal How did a tree travel halfway around the world?	Students develop physical models of seed structures. They observe how structure affects the seed's function in dispersing away from the tree.	Foundational for S.2.6 Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.
Lesson 2	Animal Seed Dispersal Why do seeds have so many different shapes?	Students develop a model of a furry animal and then use it to test how far seed models with different structures can travel.	S.2.6 Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.
Lesson 3	Water, Sunlight, & Plant Growth Could a plant survive without light?	Students conduct an investigation to determine that plants need water and light to grow.	S.2.5 Plan and conduct an investigation to determine if plants need sunlight and water to grow.
Lesson 4	Plant Needs & Habitats How much water should you give a plant?	Students plan and conduct a series of virtual experiments in order to determine how much water and sunlight a set of mystery plants need in order to stay healthy and survive.	S.2.5 Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Erosion & Earth's Surface (Work of Water) • Page 1 of 2

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	How! Mapping Landforms & Bodies of Water Where's the best place to hide a treasure?	Students develop a model (a map) of different landforms and bodies of water in a given location based on the shape of each feature.	S.2.10 Develop a model to represent the shapes and kinds of land and bodies of water in an area.
Lesson 2	Mapping: Mountains & Rivers If you floated down a river, where would you end up?	Students develop a model of the Earth's surface and use it to discover an important principle about how rivers work: rivers flow downhill, from high places to low places.	 S.2.10 Develop a model to represent the shapes and kinds of land and bodies of water in an area. S.2.11 Obtain information to identify where water is found on Earth and that it can be solid or liquid.
Lesson 3	Rocks, Sand, & Erosion Why is there sand at the beach?	Students investigate the effects of rocks tumbling in a river. Based on their observations, they construct an explanation for why rocks on the top of mountains are much bigger than the sand at the beach.	S.2.10 Develop a model to represent the shapes and kinds of land and bodies of water in an area.
Lesson 4	Mapping & Severe Weather Where do flash floods happen?	Students use a model (i.e. a map) to examine the different factors, including the shapes and kinds of land, that contribute to flash floods. They use this to predict where flash floods are most likely to happen.	 S.2.10 Develop a model to represent the shapes and kinds of land and bodies of water in an area. S.2.8 Use information from several sources to provide evidence that Earth events can occur quickly or slowly.
Lesson 5	Erosion, Earth's Surface, & Landforms What's strong enough to make a canyon?	Students create a model landform and investigate how some Earth events can occur quickly, while others occur slowly.	S.2.8 Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Continued on next page

Erosion & Earth's Surface (Work of Water) • Page 2 of 2

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 6	Erosion & Engineering How can you stop a landslide?	Students compare multiple solutions for preventing erosion.	S.2.9 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.S.2.13S.2.14

✓ Material Properties (Material Magic)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Material Properties & Engineering Why do we wear clothes?	Students investigate different material properties, such as flexibility and absorbency, and use those properties to design and build a hat that protects them from the sun.	S.2.1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.
Lesson 2	Classify Materials: Insulators & Conductors Can you really fry an egg on a hot sidewalk?	Students conduct an investigation of conductors and insulators in order to determine which are best suited for allowing people to handle hot items.	S.2.2 Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.
Lesson 3	Material Building Blocks & Engineering Could you build a house out of paper?	Students construct an evidence- based account of how a structure built of paper can be disassembled and rebuilt in new ways.	 S.2.3 Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. S.2.14
Lesson 4	Soil Properties How do you build a city out of mud?	Students conduct an investigation where they examine three different soil models. They use this information to determine which type of soil has the properties that will result in the best mud that can be used to build a house.	 S.2.1 Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. S.2.2 Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

✔ Unit Restructured for the 2025-2026 School Year

States of Matter (States of Matter)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	New! Liquid Water & Solid Ice Where do animals find the water they need?	Students obtain information about the liquid water and solid ice that different animals utilize for their survival in the Arctic.	S.2.11 Obtain information to identify where water is found on Earth and that it can be solid or liquid.
Lesson 2	New! Reversible & Irreversible Changes How is an ice cube like a crayon?	Students observe the properties of different materials after being heated up and then cooled down. They use these observations to support the explanation that some changes are reversible and others are not.	S.2.4 Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.
Lesson 3	Heating, Cooling, & States of Matter Why are so many toys made out of plastic?	Student conduct an investigation of different materials in order to determine which are most and least easily melted.	S.2.4 Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

🔆 New Unit or Lesson

Life Cycles (Circle of Life)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Animal Life Cycles How is your life like an alligator's life?	Students create models of several different animal life cycles and compare them to one another. They use these models to discover the pattern that all animals are born, grow, can have babies, and eventually die.	S.3.9 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Lesson 2	Environmental Change & Engineering What's the best way to get rid of mosquitoes?	Students obtain and evaluate information about mosquitoes from different sources. They analyze and interpret information about the mosquito life cycle to reduce the number of mosquitoes that live in a certain area.	 S.3.8 Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change. S.3.17 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Lesson 3	Pollination & Plant Reproduction Why do plants grow flowers?	Students model the structure and function of flower parts that are responsible for creating seeds.	S.3.9 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Lesson 4	Fruit, Seeds, & Plant Reproduction Why do plants give us fruit?	Students explore the function of fruits in plants and practice classification.	S.3.9 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.
Lesson 5	Plant Life Cycles Why are there so many different kinds of flowers?	Students play a game that models the stages of the plant life cycle. After playing the game students use the model to show how changes to one part of the life cycle affect all other stages.	S.3.9 Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Heredity, Survival, & Selection (Fates of Traits)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Traits & Inheritance How do you identify a mysterious fruit?	Students examine plant traits and use that information as evidence to help them identify an unknown fruit. They look for similarities and differences in the leaves, flowers, and fruits of plants to sort them into groups and identify patterns of inheritance.	S.3.10 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
Lesson 2	Trait Variation, Inheritance, & Artificial Selection What do dogs and pigeons have in common?	Students analyze trait similarities and differences among parent, offspring, and sibling pigeons. They interpret this data to discover that the variation and inheritance of traits creates a pattern that explains why we see such extreme traits in artificially selected animal breeds.	S.3.10 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.
Lesson 3	Trait Variation, Survival, & Natural Selection How could a lizard's toes help it survive?	Students compare the structures of lizards that live on an island. They simulate multiple generations of these lizards, and analyze and interpret the data to understand how these structures aid in their survival.	 S.3.7 Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. S.3.10 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. S.3.12 Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.
Lesson 4	Animal Groups & Survival Why do dogs wag their tails?	Students observe animals that live in groups in order to obtain, evaluate, and communicate information about animal social behavior. Students use evidence to show how animals form groups to help them survive.	S.3.6 Construct an argument that some animals form groups that help members survive.
Lesson 5	Traits & Environmental Variation How long can people (and animals) survive in outer space?	Students measure and compare their own physical traits (arm strength, balance, and height) and analyze the information to construct an explanation for how the environment can influence traits.	S.3.11 Use evidence to support the explanation that traits can be influenced by the environment.

Weather & Climate (Stormy Skies)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Water Cycle & States of Matter Where do clouds come from?	Students obtain and combine information that water can change from liquid to gas, but that it is always made of tiny drops. Clouds are made of water that has evaporated.	Foundational for S.3.13 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Lesson 2	Local Weather Patterns & Weather Prediction How can we predict when it's going to storm?	Students make observations of clouds and develop a tool to make predictions about what kind of weather might happen next.	S.3.13 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Lesson 3	Seasonal Weather Patterns Where's the best place to build a snow fort?	Students gather winter temperature data from three different towns. They represent the data in a table to compare the weather and decide which town is the best candidate to host a snow fort festival in future years.	S.3.13 Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
Lesson 4	Climate & Global Weather Patterns Why are some places always hot?	Students obtain and combine information to describe the different climate regions of the world.	S.3.14 Obtain and combine information to describe climates in different regions of the world.
Lesson 5	Natural Hazards & Engineering How can you keep a house from blowing away in a windstorm?	Students design and build solutions that reduce the hazards associated with strong winds that could damage buildings.	S.3.15 Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.S.3.17S.3.18

Forces, Motion, & Magnets (Invisible Forces)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Balanced & Unbalanced Forces How could you win a tug-of-war against a bunch of adults?	Students develop a mental model of the nature of forces and motion and use that model to explain the behavior of an elastic jumper.	S.3.1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Lesson 2	Balanced Forces & Engineering What makes bridges so strong?	Students develop and design a bridge to be as strong as possible while working with limited materials.	S.3.1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.S.3.18
Lesson 3	New! Pattern of Motion, Gravity, & Friction How high can you swing on a flying trapeze?	Students make observations and measurements of a trapeze model. Then, using that information they predict the motion of a real trapeze.	S.3.2 Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
Lesson 4	Magnets & Forces What can magnets do?	Students investigate the properties of magnets and the fact that they exert forces that act at a distance.	S.3.3 Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.
Lesson 5	Magnets & Engineering How can you unlock a door using a magnet?	Students investigate magnetic attraction and repulsion, and design a magnetic lock in the hands-on activity.	 S.3.4 Define a simple design problem that can be solved by applying scientific ideas about magnets. S.3.16 S.3.17 S.3.18

3rd Grade - Physical Science

This unit is found under 5th grade on our site, but we recommend teaching some lessons in 3rd grade if you are following West Virginia Standards.

Stars & Planets (Stars & Planets)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	We recommend teaching this lesson How can the Sun help us explore other planets?	n in 5th grade if you are following West Virginia Standard upon an observer's distance from the Sun. They construct a model of the solar system and gather observations of the Sun's apparent brightness from each planet within their model.	ds. apparent originaless of the surr compared to other stdrs is due to their relative distances from Earth.
Lesson 2	Gravity Why is gravity different on other planets?	Using mathematics and computational thinking, students calculate how high they could jump on planets and moons that have stronger or weaker gravity than Earth. Students analyze and interpret this data to construct an explanation for why the amount of gravity is different on other planets.	S.3.5 Support an argument that the gravitational force exerted by Earth on objects is directed down.
Lesson 3	We recommend teaching this lessor Could there be life on other planets?	a in 5th grade if you are following West Virginia Standard comparing their stars to our Sun. Based on their analysis, students plan a space mission to a planet with conditions similar to those on Earth.	ds. apparent brightness of the sun compared to other stars is due to their relative distances from Earth.

Human Body, Vision, & The Brain (Human Machine)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Muscles & Skeleton Why do your biceps bulge?	Students construct a model of the human hand to explain how muscles pull on bones to create movement.	S.4.8 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction.
Lesson 2	Light, Eyes, & Vision What do people who are blind see?	Students develop a working model of an eye. They use the model to reason about how light reflects off an object and into the eye, helping an organism process information from the environment.	 S.4.7 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. S.4.8 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction.
Lesson 3	Structure & Function of Eyes How can some animals see in the dark?	Students use their eye model to discover that the pupil controls the amount of light let into the eye. In the dark, pupils get larger to let in more light.	 S.4.7 Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. S.4.8 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction.
Lesson 4	Brain, Nerves, & Information Processing How does your brain control your body?	Students investigate how their own brain works by testing their reflexes. They discover that the brain receives information from the senses, processes the information, and sends signals to the muscles to enable movement.	S.4.9 Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Animal & Plant Adaptations (Animal & Plant Adaptations)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson1	Animal Adaptations Why do some sea creatures look so strange?	Students make observations of underwater animals in order to collect evidence that external structures serve specific functions. They use their observations to construct an argument that an animal's structures work together as part of a system to support their growth and survival.	S.4.8 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction.
Lesson 2	Learned Behavior & Instinct Why would a sea turtle eat a plastic bag?	Students use models to understand how an animal's senses, brain, and memories all work together as a system to influence their behavior and support their survival.	S.4.9 Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
Lesson 3	Plant Adaptations Why don't the same trees grow everywhere?	Students use models of roots and branches to explore their functions and then construct an argument about how these structures must work together in order to support the survival of trees in the unique environment of the frozen taiga.	S.4.8 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and plant reproduction.

This unit is found under 3rd grade on our site, but we recommend teaching all lessons in 4th grade if you are following West Virginia Standards.

Fossils & Changing Environments (Animals Through Time)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Habitats, Fossils, & Environments Over Time Where can you find whales in a desert?	Students explore the idea that the rock under our feet sometimes contains fossils, and investigate how these fossils reveal changes in habitats through time.	S.4.11 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Lesson 2	Fossil Evidence & Dinosaurs How do we know what dinosaurs looked like?	Students learn how we can infer what the outside of an animal looked like by using clues about their skeleton.	S.4.11 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Lesson 3	Trace Fossil Evidence & Animal Movement Can you outrun a dinosaur?	Students learn how fossilized animal tracks can tell us a great deal about the animals that left them.	S.4.11 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Earth's Features & Processes (The Birth of Rocks)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Volcanoes & Patterns of Earth's Features Could a volcano pop up where you live?	Students use coordinates to develop a map of volcanoes to discover a pattern of where volcanoes exist on Earth. Students identify the pattern of volcanoes in the "Ring of Fire."	S.4.13 Analyze and interpret data from maps to describe patterns of Earth's features.
Lesson 2	Volcanoes & Rock Cycle Why do some volcanoes explode?	Students investigate the properties of thin and thick lava by attempting to create air bubbles. Students realize that thick lava will cause a volcano to explode, while thin lava will not.	S.4.13 Analyze and interpret data from maps to describe patterns of Earth's features.
Lesson 3	Weathering & Erosion Will a mountain last forever?	Students make observations of the effects of weathering to discover that rocks will become rounded and break into small pieces when they tumble down a mountain.	S.4.12 Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.
Lesson 4	Sedimentary Rock & Fossils What did your town look like 100 million years ago?	Students create a model canyon and use the pattern of fossils found in each rock layer to support the explanation that the landscape has changed many times over millions of years.	 S.4.10 Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. S.4.11 Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.
Lesson 5	Erosion, Natural Hazards, & Engineering How could you survive a landslide?	Students generate multiple possible solutions to protect homes from a landslide. Students realize that there are many causes for the erosion that causes rocks to fall in landslides.	S.4.15 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Sound, Waves, & Communication Unit (Waves of Sound)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Pattern Transfer & Technology How do you send a secret code?	Students explore how digital devices encode complex information. Students generate their own codes in order to transfer information across the classroom. Then, they compare their codes and evaluate which worked best given the criteria and constraints.	S.4.6 Generate and compare multiple solutions that use patterns to transfer information.
Lesson 2	Sound, Vibration, & Engineering How far can a whisper travel?	Students investigate sound energy using paper cup telephones. Students figure out that sound is a vibration that can travel through a medium.	 S.4.5 Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. S.4.15 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Lesson 3	Sound & Vibrations What would happen if you screamed in outer space?	Students construct a model of sound vibrations to explain how air is a medium that sound vibrations travel through.	S.4.5 Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.
Lesson 4	Sound Waves & Wavelength Why are some sounds high and some sounds low?	Students make observations of vibrations and sound waves to discover that high pitch sounds vibrate faster and have short wavelengths and low pitch sounds vibrate slower and have long wavelengths.	S.4.5 Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Energy & Energy Transfer Unit (Energizing Everything)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Speed & Energy How is your body similar to a car?	Students learn about stored energy and about the relationship between motion and energy. Students build models of an amusement park ride and discover how energy can be stored in materials. Stored energy can be converted to speed.	S.4.1 Use evidence to construct an explanation relating the speed of an object to the energy of that object.
Lesson 2	Gravitational Energy, Speed, & Collisions What makes roller coasters go so fast?	Students build a model of a roller coaster and carry out an investigation using marbles. Students learn that lifting an object up stores energy in the object. When the object falls, that stored energy is released. They realize that energy is transferred when objects collide.	 S.4.1 Use evidence to construct an explanation relating the speed of an object to the energy of that object. S.4.3 Ask questions and predict outcomes about the changes in energy that occur when objects collide.
Lesson 3	Collisions & Energy Transfer How can marbles save the world?	Students investigate how energy transfers when objects collide. In the activity, Bumper Jumper, students ask questions and make predictions about how far a marble will launch over a jump after colliding with other objects.	S.4.3 Ask questions and predict outcomes about the changes in energy that occur when objects collide.
Lesson 4	Energy Transfer & Engineering Could you knock down a building using only dominoes?	Students experiment with ways to store and release energy, creating the beginning of a chain reaction machine with a lever and a ramp. Students figure out that a domino standing on end is storing energy, only requiring a small amount of energy (a tiny push) to release the stored energy.	 S.4.2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. S.4.14 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Lesson 5	Energy Transfer & Engineering Can you build a chain reaction machine?	Students continue to build a chain reaction machine — identifying a goal, brainstorming and testing multiple ideas, and determining an optimal solution. The chain reaction machine uses multiple components to transfer energy from one part to the next.	 S.4.2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. S.4.14 S.4.15 S.4.16

Electricity, Light, & Heat (Electricity, Light & Heat)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	_		
	This lesson is found under 4th gra	de on our site, but we recommend teaching this lesson in 5	
	What's the best way to light up a city?	Students obtain and evaluate information about the needs of each source of energy and analyze and interpret data about the town's resources.	energy and fuels are derived from natural resources and their uses affect the environment.
Lesson 2			
Lasson 3	Electrical Energy What if there were no electricity?	Students design a flashlight with an on/off switch, using batteries, flights, and tin foil. Students figure out that electricity can be transformed to other forms of energy, such as movement, light, and heat.	S.4.4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.
	Heat Energy & Energy Transfer How long did it take to travel across the country before cars and planes?	Students build a paper spinner and conduct an investigation to explain how heat makes things move. Students realize that heat energy can be transformed into motion energy using a turbine.	S.4.4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Ecosystems & The Food Web (Web of Life) • Page 1 of 2

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	How! Food Chains & Matter Flow What if all the ants disappeared?	Students construct models of food chains by linking cards discovering that different interrelationships exist between organisms.	S.5.7 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Lesson 2	 New! Plant Growth & Matter How does a tiny seed become one of the heaviest trees on Earth? 	Students gather evidence through a series of virtual experiments to construct an argument that plants use mostly air and water as the materials for their growth.	S.5.5 Support an argument that plants get the materials they need for growth chiefly from air and water.
Lesson 3	New! Decomposers & Matter Flow Where do fallen leaves go?	Students conduct an investigation to gain an understanding of the important role that decomposers play in recycling matter from dead leaves back into the environment.	S.5.7 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Lesson 4	Decomposers & Soil Nutrients Do worms really eat dirt?	Students make observations of worms to realize that worms act as decomposers to eat dead matter in an ecosystem and cycle nutrients into the soil.	S.5.7 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Continued on next page

🔆 New Lesson

Ecosystems & The Food Web (Web of Life)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 5	Ecosystems & Matter Cycle Why do you have to clean a fish tank but not a pond?	Students develop a model of a pond ecosystem and realize that interrelationships exist between decomposers, plants, and animals. Students discover that each organism must be in balance for the pond ecosystem to function.	S.5.7 Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.
Lesson 6	Protecting Environments How can we protect Earth's environments?	In this lesson, students learn about what happens in unbalanced ecosystems and how that can lead to an overabundance of algae and harmful algal blooms. In the activity, Bloom Busters, students play a game in which they obtain and combine science ideas in order to help a community respond to and prevent harmful algal blooms.	S.5.9 Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.
Lesson 7	Food Webs & Flow of Energy Why did the dinosaurs go extinct?	Students develop a model of a dinosaur food web. Students realize that blocking the sun's energy would have disastrous effects on the organisms that rely on this energy in the food web and cause the extinction of some entire species.	S.5.6 Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) originated as energy from the sun.

This unit is found under 4th grade on our site, but we recommend teaching this lesson in 5th grade if you are following West Virginia Standards.

Electricity, Light, & Heat (Electricity, Light & Heat)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Renewable Energy & Natural Resources What's the best way to light up a city?	Students evaluate the advantages and disadvantages of wind, water, and solar energy to power a town. Students obtain and evaluate information about the needs of each source of energy and analyze and interpret data about the town's resources.	S.5.11 Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Water Cycle & Earth's Systems (Watery Planet)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson1	Hydrosphere & Water Distribution How much water is in the world?	Students analyze and interpret data from world maps to determine the relative amounts of fresh, salt, and frozen water. Students figure out that while the Earth has a lot of water, most of Earth's water is not fresh or accessible.	S.5.8 Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
Lesson 2	Mixtures & Solutions How much salt is in the ocean?	Students create a model ocean to observe how salt seems to completely vanish when dissolved in water. Students measure and graph quantities to provide evidence that the salt is still in the solution, even though we can't see it.	 S.5.3 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. S.5.10 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Lesson 3	Groundwater as a Natural Resource When you turn on the faucet, where does the water come from?	Students learn most people get fresh water from underground sources. Students determine the best place to settle a town by considering features of the landscape & the characteristics of the plants that thrive there.	S.5.8 Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.
Lesson 4	Water Cycle Can we make it rain?	Students create a model of the ocean and sky to investigate how temperature influences evaporation and condensation. Students figure out that higher ocean temperatures lead to more evaporation, thus leading to more rain.	S.5.10 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Lesson 5	Natural Disasters & Engineering How can you save a town from a hurricane?	Students define the problem that a town needs protection from flooding. They design solutions using different types of flood protection. They realize flooding is caused by severe rainfall generated by hurricanes. Hurricanes are created where ocean temperatures are warm.	 S.5.12 Generate and compare multiple solutions to reduce the impacts of natural Earth processes on the human population. S.5.15 S.5.16 S.5.17

Earth & Space Patterns (Spaceship Earth)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Day, Night, & Earth's Rotation How fast does the Earth spin?	Students model the rotation of the Earth and investigate why the Sun looks like it's moving across the sky. Using evidence they gathered in the investigation, students build a model that explains how the Earth's rotation around its own axis causes the Sun to appear to rise and set.	S.5.14 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
Lesson 2	Earth's Rotation & Daily Shadow Patterns Who set the first clock?	Students make a shadow clock (sundial) and investigate how the direction and length of shadows change with the position of the light shining on the sundial. Students realize that the Sun's position in the sky can be used to tell the time of day.	S.5.14 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
Lesson 3	Seasonal Changes & Shadow Length How can the Sun tell you the season?	Students examine photos taken at different times of year and figure out the time of year that each photo was taken. Students discover that the Sun's path changes with the seasons, as does the time of sunrise and sunset. The Sun is always highest in the sky at noon, but that height changes with the season.	S.5.14 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
Lesson 4	Seasonal Patterns & Earth's Orbit Why do the stars change with the seasons?	Students build a model of the universe and use it to explain why different stars are visible at different times of year. Using evidence from this model, students make an argument that supports the claim that the Earth orbits the Sun.	S.5.14 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.
Lesson 5	Moon Phases, Lunar Cycle Why does the Moon change shape?	Students use a physical model of the Sun and Moon to investigate how the Moon's phase relates to its position relative to the Sun. Students notice that the Moon's phases repeat in a predictable pattern.	S.5.14 Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

Stars & Planets (Stars & Planets)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science		
Lesson 1	Solar System & Sun Brightness How can the Sun help us explore other planets?	Students gather evidence to support an argument that the apparent brightness of the Sun is dependent upon an observer's distance from the Sun. They construct a model of the solar system and gather observations of the Sun's apparent brightness from each planet within their model.	S.5.13 Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.		
Lesson 2	This lesson is found under 5th grade on our site, but we recommend teaching this lesson in 3rd grade if you are following West Virginia Standards.				
T	Why is gravity different on other planets?	planets and moons that have stronger or weaker gravity than Earth. Students analyze and interpret this data to construct an explanation for why the amount of gravity is different on other planets.	S.3.5 Support an argument that the gravitational force exerted by Earth on objects is directed down.		
Lesson 3	Star Brightness & Habitable Planets Could there be life on other planets?	Sun with the right amount of light and heat for life to exist. Students evaluate other solar systems, comparing their stars to our Sun. Based on their analysis, students plan a space mission to a planet with conditions similar to those on Earth.	S.5.13 Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.		

Chemical Reactions & Properties of Matter (Chemical Magic)

	Topic & Guiding Question	Student Objectives	West Virginia Standards for Science
Lesson 1	Conservation of Matter Are magic potions real?	Students observe that a salt and vinegar solution will turn a dull penny shiny again indicating that substances can change other substances.	 S.5.2 Develop a model to describe that matter is made of particles too small to be seen. Foundational for S.5.3 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
Lesson 2	Dissolving & Particulate Nature of Matter Could you transform something worthless into gold?	Students coat a steel nail in copper by placing it into the solution that dissolved bits of the penny. Students realize that substances can change to become particles too small to be seen, but they still exist.	 S.5.2 Develop a model to describe that matter is made of particles too small to be seen. S.5.3 Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
Lesson 3	Properties of Matter: Acids What would happen if you drank a glass of acid?	Students figure out that acids are very reactive substances. Students investigate reactions between different substances to determine how known acids react with other materials.	S.5.1 Make observations and measurements to identify materials based on their properties.
Lesson 4	Chemical Reactions What do fireworks, rubber, and Silly Putty have in common?	Students combine different substances together to discover that chemical reactions can create new substances.	S.5.4 Conduct an investigation to determine whether the mixing of two or more substances results in new substances.
Lesson 5	Gases & Particle Models Why do some things explode?	Students investigate and model the reaction between baking soda and vinegar. They figure out that gases are made of particles too small to be seen.	S.5.2 Develop a model to describe that matter is made of particles too small to be seen.